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I. INTRODUCTION

In 1955, four shell types exhibited unusual behavior which involved
the movement of their internal parts. Three of these shell - the
20mm M282E1, the 20mm T216E1 and the 3Cmm T306E10 - showed much less
fast mode damping when fired with the M505 fuzel - 3. This fuze has a
spherical arming rotor in a cylindrical cavity with small but non-zero
clearanc'es (Figure 1). The fourth sa.ell - the 8-inch T317 - showed
significant range losses and very large spin decays4 . This shell has
several rings held on a central column but free to move with small but
non-zero clearances. In all these cases, small amplitude motions of
the internal parts had significant effect on the parent slell's motion.

Two types of internal ?arts motion are possible: (1) linear
movements* of their centers of mass relative to the external shell
center of mass; (2) angular motion of their spin axes with respect to
the external shell spin axis. In order that these internal movements
have a significant effect on the shell motion, they must have compo',ents
at the same frequencies as the shell's pitching and yawing motion.
Thus we have an internal resonance situation, but the amplitude of the
internal movement is bounded. In this report, we will develop the
theory for internal motions that have fixed phase with respect to the
angle-of-attack plane and obtain quasi-linear solutions to the resulting
differential equations. Next, much simpler results will be obtained for
motion which has fixed phase with respect to the plane of the higher
frequency component of the pitching and yawing motion. Finally, these
results will be used to explain the observed behavior of the four 1955
shell.

*h'odapp 5  has derived general equations for this motion but applied them

I to the very simple case of longitudinal motion of a mass on the shell's
axis of symmetry.

1. E.D. Boyer, "Comparison of Aerodynamic Characteristicv of 20mm HEI
Shell M97 with Fuze M75 and 20mm Shell T216E1 with Fuz M505,"
Ballistic Research Laboratories Memorandum Report 865, 1pril 1955.
AD69009.

2. E.D. Boyer, "Aerodynamic Characterist-ics for Small Yaws of 20mm Shell,
HEI, T282E1 with Fuze M505 for Mach Numbers .36 to 3.78," Ballistic
Research Laboratories Memorandum Report 916, August 1955. AD77515.

3. E.T. Roecker ana E.D. Boyer, "Aerodynamic Characteristics of 30mm HEI
Shell, T306E10," Ballistic Research Laboratories Memorandum Report
1098, August 1957. AD152952.

4. B.G. Karpov and J.W. Bradley, "A Study of Causes of 'ort Ranges of
the 8" T317 Shell," Ballistic Research Laboratories Report 1049,
May 1958. AD377548.

5. A.E. Hodapp, "Equations of Motion for Constant Mass Entry Vehicles
with Time Varying 'enter of Mass Position," Sandia Laboratories
SC-RR-?0-691, Novembe'r 1970.
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II. THEORY

The theoretical model consists of two bodies: (1) the external
symmetric shell body with mass mb and (2) the internal rotationally

symmetric component with mass mc. The center of mass of the internal

component is allowed to perform a circular motion of radius e normal
to the axis of symmetry of the external body maintaining a fixed phase
angle, ' with the angle of attack plane. The axis of symmetry of

the internal component can cant at a small fixed angle, y, with respect
to the axis of symmetry of the external body. The plane of this cant
angle is now constrained to rotate about the shell axis, maintaining
a constant angle 0 with the angle-of-attack plane. If 0 is the roll

Y
orientation an le of the angle-of-attack plane with respect to aero-
ballistic axes , the polar angle of the circular center of mass motion is

C =  (1)

and the roll angle of the cant plane is

0y = 0 + cy (2)

In Appendix A, the angular momentum of this two-body system is
computed and used to obtain the following differential equations.

'xb b + Ixc c = A bp

-BE( 0Cos a + asin 0)]

B cos O6 + a sin Oe ) e (3)

-av

It - (Aq + iLx0) -(A + iApa + i (+E) = 0 (4)

6. C.H. Murphy, "Free Flight Motion of Symmetric Missiles," Ballistic
Research Laboratories Report 1216, July 1963. AD442757.
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where

= B + i a is the complex angle of attack

'xb, I are the roll moments of inertia of masses b and c

Stb Itc are the pitch moments of inertia of masses b and c

B =I PC -Iy xc Itc

B =m x Z
E C C

r = B y exp (iHy)

E= B ec exp (iO)
C

Lxo I xb Pb + Ixc Pc

and the other symbols are defined in the List of Symbols.

The usual quasi-linear assumption is made that the pitching and
yawing motion when the internal motion occurs has the spme epicyclic
form that describes the rigid body motion:

KI e +K 2 e (5)

where

jJK.- = . K.

J = Jo + t

In Appendix B, quasi-linear relations for the frequency shifts
and damping effects i-troduced by these internal motions are given.

j - . K. C j [2 I t  jr Lx o-1 (6)

K. X.iK.i + qi S. i. [2 - L 01- (7)



where

Cj [B yjy cos y + B C;C cos *l][ei

ie~
[e 2[e(6O00

S. = [B y sin y A B [21 sin e] .

Te qxcac a ca

jO i ) ei(e-O.) ^

€ 2 1I

and the C ). are the frequencies of the rigid body.

The quasi-linear approximations can be inserted in the roll equation

(Equation 3) and the result averaged. This is done in Appendix C
with the result

Ixb + Ixc~c At - K S " K S (8)
p c 1 2 22P

It should be noted 6 that

4) 2r XL /1 (9)
1r 2r x

Thus 2It  L - 0 is positive for the fast rate and negative for the

slow rate.

Equations (7-8) show that positive Sits (4) 0 in the first or

second quadrant) can cause undamping of the fast component (K). damping

of tie slow component (K) and a reduction in the spil rate.
2

'1
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Now 0 can be determined by the definition

ii

e (10)

where

-- o (K 2 + K 2 + 2K K cos $)1/2
VI 1 2 1 2

Thus

[e1G -L [1 + (K 1 K)e 6

- K+ [K1]) (11)

1 

[e [ = K [6-1] (12)
2 2 2

where
7

- [(K -K) E (k) + (K +K) E (k)] (13)el 2  1 2 1 1 2 2

[-]2 [(K -K ) E (k) + (K +K ) E (k)] (14)
e2 1K 2 2 1 1 1 2 2

2

4K K
k2 =.

k2 1 2(K +K )2
1 2

7. C.H. Murphy, "Prediction of the Motion of Missiles Acted on by

Non-linear Forces and Moments," Ballistic Research Laboratories
Report 9.95, October 2956. AD122221.
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and

E. is tne complete elliptic integral of the i-th kind.

When K >K , Equations (13-14) can be approximated by
1 2

1 - 0.36(K /K )3[p1l]e~ K 21(15)

1

0.5 + O.14(K 2/K 1)3
[tl] 2K (16)

When K > K , interchange all 1 and 2 subscripts on both sides of
2 1

Equations, (15-16).

III. FAST MODE LOCK-IN

The preceding section assumed that the e and y motions had constant
phase--that they were "locked-in"--with the angle-of-attack plane. We
note from Equations (6-8) that the frequency, damping and roll effect

terms for the j-th mode contain *. or 4? and thus the effect of the fast

mode is much greater than that of the slow mode. This suggests a much
simpler theoretical model, namely, one in which the e and y motions are
locked-in with the plane of the fast mode. Then Equation (10) is replaced
by

i.I e = (17)

Under this assumption, Equations (4) and (5) very quickly yield

A$-jr Kl1[B y cos € + B $ e cos 0 ][21 $ -Lxo (18)
1 jr1 TI Y EC I t jr X0

=0 (19)~2

K X K + $[B y sin y +B C$ sin e ][21 J-L x01 (20)1 1 1 1 [By1 £1 t 1  O

2 22 (21)
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Equations (3) and (5) can be combined and averaged to yield

I xb~b + Ixc Pc : A4 Pb
p

-1 K1 [By1 y sin 4y +B $ csin4)] (22)

IV. DISCUSSION

The ball fuze is a case where the center of mass motion can occur
but we can assume y = 0 and Pb = pc. Equations (20-22) become

K=X K + $2 m Xc sin [2It "IxPb1 (23)141 1 1 1 k si [2t$ Pb

K =X K (24)
2 2 2

Ixb = A b - $2 K m x k. E sin 4) (25)

In all flights, K remained less than 120 milliradians and no spin-

down moment could be observed.

In Figure 2, K/K is plotted versus Mach number for the 20mm

shell T282E1 with and without the ball rotor. For Mach numbers below 2,
the exponential damping is well determined, but above this Mach number,
considerable scatter occurs. Projectiles whose fuzes did not have the
ball rotor have damping rates that lie close to -7 per second while
those with the rotor have values that are as much as 9 per second
greater (i.e. +2).

This phenomenon for Mach numbers near 2 can be ascribed to the
action of a locking spring which releases the ball when the shell spin
rate is large enough. For a given twist gun tube and air temperature,

~the initial spin rate is proportional to the launch Mach number.

15



The appropriate parameters for the T282E1 at Mach number 3.3 are
given in Table 1. For Mach numbers between 2.8 and 3.8, measured K1 falls

between .05 and .12. The observed damping rate discrepancies can be
explained by Equation (23) with values of le sin * between 0.09mm and

0.28 mm. These values are possible for the actual tolerances observed
in this shell.

The actual spin histories of several T317's are given in Reference 4
and are repeated as Figure 3. This figure also gives the spin history for
three T347. The T347 shell has the same external shape, mass, and
moments of inertia but no moveable internal components. In all observed
cases, the T317 had L greater spin loss and flew to a lesser range. The
relative decrements between the range of each T317 shell and the average
range of the T347's is given in the figure. Thus a spin loss of almost
70 Hz was observed for a projectile that flew 11% short of its proper range.

Unfortunately, measurements of angular motion were not made. A
range loss of 11% would, however, require an average angular motion
amplitude of 100 to 150. The shell internal construction is fairly
complicated but can be theoretically approximated by a single ring freely
sliding on a central shaft (Figure 4). The tolerances are quite small
but are sufficient to allow the ring to cant at an angle as large as
.004 radian. When the ring is fully canted, its center of mass is on
the axis of the shell and, hence, c is zero. For simplicity we will
assume that the ring is spinning with the shell. The fast mode damping
rate as given by Equation (20) becomes:

K = )y sin [21t - (26b]-
x(26)

The spin equation (Equation (22)) now reduces to

I bAt~ $ K (I p $ ~)y sin 4 (27)Axb=A Pb -$K(xcPb - tcl ) 1 i ¢y 7

P

For a dynamically stable shell, X is negative. If y is in the1Y

first or second quadrant, the second term in Equation (26) is positive
and, hence, K should grow to some equilibrium value. This equilibrium

value of K can then be used in Equation 127) to give a spin-down moment.

Our theoretical model of the behavior of the T317 is based on the
assumption that it has values of A ey and y such that ats fast mode

16
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TABLE 1. PARAMETERS FOR T282E1 AT MACH NUMBER 3.3

= 2.0 cm CD = 0.41

m = 96.6 gm C = 2.6
m L

a

I = 53.4 gm/cm
2

cM

I = 394 gm/cm
2

y
CM  + CM. =-5.3

m =3.0 gm q a

x= 2.9 cm CM 0.15
c pM

pa

V = 1140 m/s

P =1900 Hz
0

1

to

o~1

17



As a check on this conjecture, Equations (3-4) were coded for a
digital computer. Although the complete set of aerodynamic coefficients
are not well known for this shell, nominal values were used and are
given in Table 2.* Figures 5 and 6 give the yawing motion and spin for
the completely rigid shell (y=O). The yawing motion shows the usual
small amplitude slow mode limit cycle which is frequently observed.

Computer runs were then made for y = .004, = 45O. Figure 7

shows a rapid growth of the fast mode angular motion to about 180 and
a decay on the down leg of the trajectory. A range loss of 11% was
computed and a large spin-down is shown in Figure 6. The computed
spin-down is as large as the observed spin-down but different in detail.
Thus we would assume that the actual angular motion grew much slower than
our computed motion but reached a much larger maximum value.

In summary then, the theory gives good qualitative agreement with
the observed behavior of the T317. In view of the incomplete information

on its aerodynamic properties and angular motion, better quantitative
results can not be expected.

V. CONCLUSIONS

A theory has been developed for the motion of a projectile with
a mov,,S internal component that performs either a forced center of
mass motion or a forced precession of its spin axis.

This theory gives a good explanation of the observed reduced
'A damping of shell with a ball rotor in its fuzes and the reduced range

and rapid spin-down of a projectile with a ring on a central column.

VI. ACKNOWLEDGMENT

4, This theoretical work has benefited greatly from discussions with
W. Chadwick and W. Soper of Naval Surface Weapons Center/Dahlgren
Laboratory, H. Vaughn of Sandia Laboratories, and R. Kline of Picatinny
Arsenal. The author is particularly indebted to J. Bradley of BRL

[ for his critical review of the analysis and his programming of the
necessary numerical calculations.

*Since a nonlinear Magnus moment was used in the numerical work,
Equations (6-7, 26) no longer apply but quasi-linear forms of
these equations can be obtained by the usual techniques.6
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TABLE 2. PARAMETERS FOR T317

I/I t  = .1352 J.218 M< .88
CD = -9612 + 1.34M .884M(.1

.6503 - .125M M>1.1

I xc/ = .0472

Itc/ = .0251 4.4  M< .88
C M  1 .32 + 3.5M .88,<M41.1

a .17  M>1.1
C D62 =3

C2  =-.012 C -. 26 + 9620.

pa L. 0 17 61 6>0.1

C =2.0L

CM  + C = -6.3
q a

19
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A (l/2)pLIST OF SYMBOLS*

A (1/2)p Sj2V[CM L/~)C
pa pa

A pa(1/ 2)p Sk2VE CM p+ CM. X0 (/M 2) C L 

A (1/2)p SjV[ C M I/k)C

a

B Ip -I

Y)

VB mX k
e~ cc

C. (B .y Cos 4y + B .Ccos *)[e A]. j =1,2

C roll damping moment coeffizient, Equation (A39)

C L lift force coefficient, Equation (A41)
A. a

C M Magnus moment coefficient, Equation (A40)
pa

CM ,CM. damping moment coefficients, Equation (A40)Iiq a

C M static moment coefficient, Equation (A40)

*1-n this List, the words "1projectiles"1 "body" and "internal component"
are used in the sense that the projectile consists of an external symmietric
body and an internal symmetric component.
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LIST OF SYMBOLS (Continued)

4. - 4.e ,e ,e unit vectors in the nonrolling aeroballistic system,
1 2 3

e along the body's axis of symmetry

e 1c ec e unit vectors in the internal component's coordinate
2C 34

system, e c along the internal component's axis of
14.

symmetry and e normal to e, Equations (A23-A25)
3c 1

[e.2- e d , j = 1,2

Ei(k) complete elliptic integral of the i-th kind,
i = 1,2, with modulus k

I Ix t  axial and transverse moments of inertia of the
X tprojectile

xb' tbaxial and transverse moments of inertia of the

Ttb body, Equation (A20)

I I axial and transverse moments of inertia of the
I Icinternal component, Equation (A31)

K. length of the j-th modal arm, j = 1,2
-fI J

reference length

t angular momentum vector of the projectile

tb' Lc angular momentum vector of the body and internal
component, respectively

xO xbPb* 1 xc Pc

m the mass of the projectile, mb + mc

nimb mass of the body

30



LIST OF SYMBOLS (Continued)

m mass of the internal component
C

M M_, M_ components of the aerodynamic moment vector in the
Y y znonrolling aeroballistic system, Equations (A39-A40)

p, q, r components of the projectile's angular velocity in
the missile-fixed coordinate system, Equation (Al)

p, q, r components of the projectile's angular velocity in
the nonrolling aeroballistic system, Equation (A4)

Pb b' the roll rate of the body

A

Pc $c + the roll rate of the internal component

rb distance of the body submass dm from the e -axis,
Equation (A12) 1

fT' r vector from the center of mass of the projectile to

the center of mass of the body, Equation (A8)

vector from the center of mass of the body to the
submass dm of the body, Equation (A12)

c distance of the internal component submas3 dmC

from the e 1 -axis, Equation (A29)

-1
c

r Cvector from the center of mass of the projectile to
the center of mass of the internal component,
Equation (A9)
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LIST OF SYMBOLS (Continued)

vector from the center of mass of the internal
component to the submass dm of the component,
Equation (A29)

S reference area

* ie
S. (B y sin oy + B *j. sin )e 1j, j = 1,2

t time

V magnitude of the velocity vector

x, y, z missile-fixed coordinates, with the x-axis along
the body's axis of symmetry, the y-axis initially
pointed down and rolling with the body and the z-axis
determined by the right-hand rule

:;;xb  xb , x e component of rb' and rxb, b rc, respectively

x e -component ofXc elc c

a, 8 angles of attack and sideslip in the nonrolling
aeroballistic system

y the cant angle: the angle (assumed small and
constant) between the axis of symmetry of the

internal component and the axis of symmetry of the
body

lr By exp (iO)
Y Y
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LIST OF SYMBOLS (Continued)

[6-l1ej - [(Kj-K j)E (k) + (K +K )E (k)], j =1,2
7rK 2  1 1 2 2
J

AI j j- ,jr, j = 1,2

e + ~ the nondimensional radius of the circularE b  + C

motion performed by the center of mass of the internal
component about the axis of symmetry of the body

i b  (-)

bm

c m

E B e exp (ie)

0 the orientation angle of the angle-of-attack plane

with respect to the aeroballistic axes (6e i=);

in most relations, 0 can be approximated by

e the orientation angle of the cant plane with respect

to the aeroballistic axes

-0 the polar angle of the circular motion perfoirned
C by the center of mass of the internal component

about the axis of symmetry of the body

A. (A q. + A a)/(21t  - Lx0), the j-th damping rate

(Kj/K.) for a rigid projectile, j = 1,2

+ ia, the complex angle of attack

p air density
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LIST OF SYMBOLS (Continued)

the polar angle in the e -e plane of the body2 3
submass, Equation (A12)

c the polar angle in the e 2C-e plane of the

internal component submass, Equation (A29)

+ *t, the orientation angle of the j-th modalJJo 3
arm, j = 1,2

initial orientation angle of the j-th modal arm,
j = 1,2

frequency of the j-th modal arm, j = 1,2 (it is

assumed that $ >$ , that is, the 1-arm is the fast
arm) 1 2

frequency of the j-th modal arm for a rigid
7 jr projectile, j = 1,2

* ey -e, assumed constant

y Y

6e-e, assumed constant

U^

2 1

angular velocity of the projectile, Equations (Al, A4)

mf angular velocity of the missile-fixed coordinatemf system, Equations (A2, A4)

angular velocity of the nonrolling aeroballistic
coordinate system, Equations (A3, AS)
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:! LIST OF SYMBOLS (Continued)

Subscripts

[ av 21r [ d

b,c body, internal component

x,,)Z vector components in the nonrolling aeroballistic
system

Special Notation

a + ib complex representation of the vector ae be
2 3

( ) d( )/dt
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APPENDIX A. DERIVATION OF EQUATIONS OF MOTION

A missile-fixed coordinate system can be defined with x-axis
along the missile axis of symmetry, z-axis initially pointed down and
rolling with the missile, and a y-axis determined by the right-hand
rule. If the angular velocity of the missile in these coordinates is

W = (p, q, r) (Al)

the angular velocity of the coordinate system is

(p, q, r) (A2)~Mf

For the motion of symmetric missiles, a much more convenient co-
ordinate system is the aeroballistic system, which pitches and yaws
with the missile but has zero roll rate. Its angular velocity vector

Ji in missile-fixed coordinates is

(0, q, r) (A3)

Transverse components of a vector in the nonrolling coordinates will
be identified by tilde superscripts. In aeroballistic coordinates,
the three angular velocity vectors assume the form

+ + + +4~4
m Qf p e1 + q e2 + r e3 (A4)

q e2 
+ r e3 (AS)

where e are unit vectors along the aeroballistic axes.

We now consider the projectile to consist of its external
symmetric body with mass mb and an internal symmetric component of

NM mass m which is free to move perpendicular to the body's axis of

symmetry. The axis of symmetry of the internal mass is assumed toI, cant at constant angle y with respect to the body's axis of symmetry
and the plane of this cant angle is assumed to maintain a constant
phase angle y with the angle-of-attack plane. If 8 and 0 are the
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orientation angles of the angle-of-attack plane and the cant plane,
respectively, then

6 =8+$ (A6)
Y Y

The motion of the center of mass of the internal component will
be assumed to be a circ,'lar motion of amplitude ke and constant phase
angle * E with respect to the angle-of-attack plane. If 6e is the

phase angle of this center of mass motion, then

6 =e+ (A7)

With respect to the body-plus-internal-component center of mass, both
the body and the component are performing circular motions with radii
£b and £c , respectively. The vectors locating these two centersb c
of mass with respect to the projectile center of mass are

r=x +~ cs e sin e) (A8)rb b el + zSb (e2 cos e 3 C

r =x e fc ( cos 6 + e sin e) (A9)
-~4c c I c 2 £ 3 E

xbmb +xc mc =0 (AlO)

where

E = m e/m
b c

Ec = mb e/m

m = mb + Mc

The angular momentum vector of the body, can now be computed

from its definition8 in terms of a large number of small submasses,

8. Herbert Goldstein, Classical Mechanics Reading, Massachusetts,
Addison-Wesley Publishing Company., Inc., 1950.
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dm, with position vectors rb +

tb = fCr b + ~)X (ri, + ~)dm

4 + dm (All)
.= mb rb Xrb (bX

The rotational symmetry of the body can be best exploited by
expressing the position vectors of the submasses in cylindrical co-
ordinates:

Sb e 1 + r b [e 2 cos 'b + e3 sin b] (A12)

'~1 The rotational symmetry implies several useful integral relationships:

2 j sin Cosb dm = (A14)

2 AS M A i n2 dm~A ui (1/2) i2 d (AlS)
Jrbu Yb r; b~ J b

Since the body is spinning with respect to the aeroballistic axes, it
should be emphasized that b is not zero. The derivatives of ). and

Rb can, however, be easily computed using the relation

e. X e (A16)
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:C b b (e2 sin e es cos o) + x b (A7)

b(, sin e cos + X (A18)

The first cross product in the angular moaentum equation
(Equation (All)) can now be computed from Equations (A8) and (AI7) and
simplified by neglecting terms involving C *

s f b

rb X r (e cos £+ e3 sin )

+ rX (Xrb
4.I+rb X WrbJ

= " 2. L b ( cos L + r sin e ) e1

+qx -xt b q cos e ) e

+ (rx xb 2 Lb C s3 (A1)

The integral in Equation (All) can be simplified quite easily to a
familiar form. This is cue to the fact that the aeroballistic axes
are normal axes of inertia for the body.

J(RX~ e~~ I~ + JRbX (Q X Rb dii

Sb exb l + 1Ib (q e2 + r e3) (A20)
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where

I =1*2 dM
~xb r

'tb 1 ̂2~ + (1/2) i2) dmn

Equations (AI9-A20) can now be used to compute the angular

momentum of the body from Equation (All):

+ + L (A21)
b xb y b 42 zb -3

where

xb b xb + Be C os 8 + sin )

L~b= ~2 ( bmb ) B beCos e£

Lib r (Itbmx) +BeE b sin 0

Pb b B = mc x

The angular momentum of the internal component can be computed

in a similar way

4 4
= m r X r + c X R dm (A22)

c c c
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The integral in Equation (A22) can best be treated by the introduction
of axes that pitch and yaw with the internal component. These axes can
be selected so that they are normal axes of inertia for the internal
component. For small cant angles (y < 0.1), unit vectors along these
axes can be defined by the followig equations:

e1c = 1 + Y [e2 cos ey + e3 sin eY] (A23)

e2c -Y e + e2 cos e + e sin e, (A24)

e3c e 2 sin e + e3 cos e (A25)

The derivatives of these unit vectors can be computed in terms of 0

and the derivatives of the aeroballistic unit vectors.

e 6Y [e2 sin e - 3Cos ]+ X c (A6

ec = [e2 sin e, -e 3 cos +6 e2C

3c -e" cos 6 + 4e3 sin 6 + X e

a.e 3 c =-6 os +e sn] Xec (A28)

The position vector of the internal component's submasses can nowI be given in cylindrical coordinates and the j. unit vectors.

R =c  e +i [ec cosc +e sinc] (A29)
c c c 42c c 3c c
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The derivative of this vector is somewhat more complicated than the
derivative of since a term involving the precession rate, 6, is
present.

Rc r c c (e2c sin Oc -3c Cos c)

{+ B
" xYi sin 8 + Z"sin (0c + 6)]e2

LTc ±L TcL c Y~

S x Cos + rc cos (c + ]Ye}"[ c co y c )

Q+ -XR A30)
c

The integral in Equation (A22) can now be computed in a similar
fashion as was done for the integral in Equation (All) since symmetry
conditions like Equations (A13-A15) apply. An additional term in-
voiring the precession rate, 6, must, of course, appear.

kI "~~: I*R c X c dm = c I xc e 1c

-4,,-

[IxceI + y (Ix c I (e2 cos e + e3 sin e )Y Y

SJc X (' X c) dm (A31)
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- '-- ----. ert

'A where

I T 2 din
A XC Jc

t= f [2 + (1/2) j2] dM

The integral on the left side of Equation (A31) can easily be handled
if the unit vectors along the normal axes' of inertia of the internal
component are used.

Cdm = a1c x e1c + Itc (Zc e2C + 3c e3c)

Ic e (A32)
,=(xc tc lc ec Itc

where

"I ijc •i~ e.
Jc jc

Since the first cross-product in Equation (A22) can be handled
by an equation similar to Equation (A19), Equations (A31-A32) can be
used to yield the angular momentum ef the internal component in the
aeroballistic axes.

=L + L- e +L e (A33)
c xc 1 yc 2 zc3
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- - - • - . .- L----' -" i -= : ' '' t., , -": - %, -- " -. ,7 ,--.-

where

L =Ip (I - y qcos0 + sin )
xc xC c xc tc Y Y

+ B e cos e + sinO )

= 't +m x2) + B ycsn

y: c c Y Y

'r, tC

; '"Pc c c "It

+ B m Cos h e

i

Lic (I +m MX2) + B y sin 6
zc tc CC Y Y

+~ B0c sine.

PC + By xC C tC

Equations (A2l) and (A33) can be added to yield the total angular
momentum of the projectile:

L =L xe 1 + L. e2 +L~ e3 (34
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I" ...

where

Lx Lxo + (Ixc I)y ( cos 6y sin e

+ £ (I cos O + sin eC)

Li Ity Y cos e + B e cos e

Li = r + By sinG + B 8 e sinG
Z t Y Y C

L0 xb Pb + Ixc Pc

I +I 1 2+ MX
* t tb tc mb  c c

The differential equations for the angular motion can now be
computed in the usual way.

1 3y~~~-e2 + e x

y+

M x 1 2 + M e (A35)

1The roll equation is obtained from the first component of
Equation (A35):

L + B ( sin - cos )y
x y y y

+ B C (q sin 0 - i cos e )c = M (A36)
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Since our primary interest in the rolling motion is in its averagc
behavior, L xcan be replaced by its average.

'A (L) L xc c(A37)x av XO 1xb b 1  "c

The transverse angular motion equation is obtained by multiplying
the third component of Equation (A35) by i and adding the result to
the second component:

I~t i LX0 Q P+E iM- (A38)

where

B = y exp (i e

N E =B 68c exp (ie)

The usual linear aerodynamic moment can be written in the form6

M =(1/2) pS kV2 C x (Pb /V) (A39)
p

M- i M.-=(1/2) pS tV2  £V
y z ~L(Pb k/)CMa CMcj

+ CM (QL/V) -i CM ( / £ (A40)
q a v)
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where

= + i &=complex angle of attack

A good approximate relation between Qand is6

i Q = + S CL (A41)

The small lift term can be neglected when we use this relation in the
roll equation) but that term does have a damping effect on the complex
angle of attack equation. Equations (A39-A41) can now be used to
write Equations (A36) and (A38) in their final forms:

xbPb-Ix A~ k b + B y 0cos 6y+ ai sin 6 y

+b Be[ + a si ec] e A2
p .Jav

I (A q + iLxo)t (A a+ iA pa t + i (r + E) =0 (A43)

where

At (1/2)pSk 2 V C£

p p

A q (1/2) p S £ V[b M + (I0 /m£2 C L

A (1/2 ppSkc2i
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Although Equations (A42-A43) were derived for a canted internal
component precessing with the angle-of-attack plane, they -:an be

applied to a canted component that is fixed with respect to the body
of the shell. For this case,

Pb and =0 (A44)

P c = Pb (A45)

Thus Equations (A42-A43) also are valid for the motion of a shell
with mass asymmetry.

,4

'A

r a.
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A[PENDIX B. QUASI-LINEAR SOLUTION OF PITCHING AND YAWING MOTION

The quasi-linear approach assumes that the actual angular motion
can be approximated over sections of the trajectory by the epicycle
solution of the linearized equation with constant coefficients.

Thus

= K e'i l + K eJ 2  (Bl)
1 2

= *t + jo

Equation (Bl) can be substituted in Equation (A43) and the small terms

involving K. omitted:

S(K 2 + 2i K (A + iLx)(l + i K )
1 q O 11

- (A + iA ) K1

:.: -i( + E)e - i 1 + {} e' @  (B2)

where $ 2 -l and {} is the same expression as on the left side
2 1

of Equation (B2) with the 1 subscript replaced by a 2 subscript.
This second term on the right side of Equation (B2) is periodic
with an average value of zero while the left side is constant. We
therefore have to average the first term on the right side to obtain

its contribution to the quasi-linear frequencies and damping rates.
0 y and 0 in P and E respectively can be computed from 6 using the

definition

eie e

=[K ei I + K ei 2][K 2 + K2 + 2K K cos ]-1/2 (B3)
I2 1 2 1 2

515

X4



When exp (i6) is multiplied by exp (-if ), we see that the product
A1

is a periodic function of *.

Now 21r
(e ie )*e - ' ( )eie i

((e)e av T 27
f ie -i 2w

e6 e ]
0

21T
+ i~if eI e 1~d'2r

0

= i; [e ] (B4)1 1

[ )e*e- ) i lav = [$6 e'i 1]
0

27r

+ Jo(ei") 'e-i4Id 2w

i;2 [e (BS)

where

io[1 oi(-cj)
: eij = -' e d

Equations (B4-BS) can be used in averaging Equation (B2) and the
result separated into real and imaginary parts:

I t 2 _(L - C K-C) + A : 0 (B6)
1 LxO- 11 1
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K =XK + $ s [$ - (B7)

where
C. = [Byjy cos *y + BV$ie cos c][e]

S. = [Byjy sin y + BcJc sin ][eiO

B.yj =IP - Itcj

X= [Aq j + Apa][ 2Itj - Lxo]-1

In a similar fashion, the frequencies and damping rates for the
second mode can be derived.

It $2 - (Lx0 - C2 K2 )2 + Aa=O (B8)

: X K + $S12I - LX0] (B9)
2 2 2 2 2  2

Let A$. = *. - 'jr where jr is the j-th frequency of the rigid

body consisting of the external body and the internal component.
Equations (B6) and (B8) become

t r jr Lxo jr

+ C. K.-* + A = 0 (BlO)
i jr a

Thus
-C.K.-

4. = - (.Bll)
2 tPjr LXO
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APPENDIX C. QUASI-LINEAR SOLUTION OF THE ROLL EQUATION

The average of the periodic y-term in the roll equation (Equation
(A42)) can be obtained from the following relations*:

M- i[ e¢j+ y] I[M j-6)- y]

[sin (6 76-)]av -e
2i

= [e ie sin (Cl)

[8cos 6 + cisin ] :R{ e Y}

y y av av

= [$ K sin (6 - ) + $2K sin ( -2)]av
I1 y 1 2 2 Y 2 a

$2K2[ i e

(1K [ei] 1 +  sin (C2)

[5(0 cos 0 + c sin 0)] av : (8 sin 0 - c cos 0)

- sin 0+ cos 0 ]y y yav

=I{e iOa

1. = [;2 K sin (0y-6 ) + ;2 K sin (0y-6 )]
1 1 Y 1 2 2 y 2 av

S(4 K+ [e;2] +c 2 K [e i ] 2)sin4 (03)

11 1 2 2 2

Equations (C2-C3) and similar relations for subscript c can now be

used to average Equation (A42)) which reduces to

IxbPb + I P = Az Pb $ K S - $ K S (C4)

* the othb xc c Pr1p11 222
*For the e's of this report, /ei( 0 -¢ I) d'p =L/ iz( ¢ 1 -V0) d$
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Note that the spin moment depends on y sin * and c sin * , the
0 -f-lae ompnetsofye~ iout-of-plane components of and ce . Moreover, only the out-

of-plane components appear in the damping rate equations (B7) and (B9).If S1 and S2 are positive, their effect is to undamp the fast (K1) mode,

damp the slow (K2) mode and reduce the spin rate.
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